Limited information GOF tests
The lavaan.bingof package provides a set of LIGOF tests for CFA models with binary data. Models estimated using the lavaan.pl package are directly compatible.
library(lavaan.pl)
#> ℹ Loading required package: lavaan
#> This is lavaan 0.6-19
#> lavaan is FREE software! Please report any bugs.
#>
#> ── Conflicts ─────────────────────────────────────────── lavaan.pl 0.1.0.9002 ──
#> ✖ lavaan.pl::cfa() masks lavaan::cfa()
library(lavaan.bingof)
(dat <- gen_data_bin(n = 1000, seed = 123))
#> # A tibble: 1,000 × 5
#> y1 y2 y3 y4 y5
#> <ord> <ord> <ord> <ord> <ord>
#> 1 1 0 0 1 1
#> 2 1 1 1 1 1
#> 3 1 1 1 0 1
#> 4 1 1 0 1 1
#> 5 1 1 0 1 1
#> 6 1 1 1 1 1
#> 7 1 1 1 1 0
#> 8 1 1 1 1 1
#> 9 1 1 1 1 1
#> 10 1 0 0 1 1
#> # ℹ 990 more rows
mod <- "eta =~ y1 + y2 + y3 + y4 + y5"
fit <- cfa(mod, dat, std.lv = TRUE)
expect_true(inherits(fit, "plFAlavaan"))
#> ----- PASSED : <-->
#> call| expect_true(inherits(fit, "plFAlavaan"))
# Test statistics
all_tests(fit)
#> # A tibble: 6 × 6
#> X2 df name pval Xi_rank S
#> <dbl> <dbl> <chr> <dbl> <int> <int>
#> 1 2.82 5 Wald 0.728 14 15
#> 2 2.80 5 WaldVCF 0.730 5 15
#> 3 0.862 3.31 WaldDiag,MM3 0.872 15 15
#> 4 1.86 3.63 Pearson,MM3 0.709 15 15
#> 5 2.30 4.18 RSS,MM3 0.707 15 15
#> 6 1.86 3.62 Multn,MM3 0.708 15 15
As a comparison, we can look at the output from using the
cfa()
function in the lavaan package.
fit1 <- lavaan.pl::cfa(mod, dat, std.lv = TRUE)
fit2 <- lavaan::cfa(mod, dat, std.lv = TRUE, estimator = "PML")
# Test equality of coefficients and standard errors
expect_equal(coef(fit1), coef(fit2), tolerance = 1e-5)
#> ----- PASSED : <-->
#> call| expect_equal(coef(fit1), coef(fit2), tolerance = 1e-05)
expect_equal(fit1@Fit@se, fit2@Fit@se, tolerance = 1e-5)
#> ----- FAILED[data]: <-->
#> call| expect_equal(fit1@Fit@se, fit2@Fit@se, tolerance = 1e-05)
#> diff| Mean relative difference: 0.03419516
# Test equality of test statistics and p-values
c(
"Wald_test",
"Wald_vcovf_test",
"Wald_diag_test",
"Pearson_test",
"RSS_test",
"Multn_test"
) |>
set_names() |>
map(.f = function(x) {
out1 <- do.call(x, list(fit1))
out2 <- do.call(x, list(fit2))
expect_equal(out1, out2, tolerance = 5e-3)
})
#> $Wald_test
#> ----- PASSED : <-->
#> call| .f(.x[[i]], ...)
#>
#> $Wald_vcovf_test
#> ----- PASSED : <-->
#> call| .f(.x[[i]], ...)
#>
#> $Wald_diag_test
#> ----- PASSED : <-->
#> call| .f(.x[[i]], ...)
#>
#> $Pearson_test
#> ----- PASSED : <-->
#> call| .f(.x[[i]], ...)
#>
#> $RSS_test
#> ----- PASSED : <-->
#> call| .f(.x[[i]], ...)
#>
#> $Multn_test
#> ----- PASSED : <-->
#> call| .f(.x[[i]], ...)
Testing differences
information_matrix <- function(fit, type) {
lavargs <- list(
lavmodel = fit@Model,
lavsamplestats = fit@SampleStats,
lavdata = fit@Data,
lavoptions = fit@Options,
lavcache = fit@Cache,
inverted = FALSE
)
if (type == "observed")
out <- do.call("lav_model_information_observed", lavargs,
envir = asNamespace("lavaan"))
else if (type == "expected")
out <- do.call("lav_model_information_expected", lavargs,
envir = asNamespace("lavaan"))
else if (type == "first.order")
out <- do.call("lav_model_information_firstorder", lavargs,
envir = asNamespace("lavaan"))
else stop("Invalid type")
return(out)
}
Sensitivity (inverted) matrix
# From lavaan.pl
Hinv1 <- with(fit1@external, computeVar(lavaan.pl, D)$invH[idx_plFA2lav, idx_plFA2lav])
fit1 <- cfa(mod, dat, std.lv = TRUE, estimator.args = list(computevar_numderiv = TRUE), verbose = TRUE)
#> - Computing frequencies...
#> - Initialised at user-supplied values.
#> - Optimising with ucminf...
#> Done! (0.01 secs)
#> - Computing Delta...
#> Done! (0 secs)
#> - Computing H numerically...
#> Done! (0.01 secs)
#> - Estimating J...
#> Done! (0.02 secs)
#> - Inverting H...
#> - Computing the variances...
#> Done! (0.02 secs)
Hinv2 <- with(fit1@external, computeVar(lavaan.pl, D)$invH[idx_plFA2lav, idx_plFA2lav])
Hinv3 <- solve(information_matrix(fit1, "observed"))
expect_equal(Hinv1, Hinv2, tolerance = 1e-5) # ucminf vs numderiv
#> ----- PASSED : <-->
#> call| expect_equal(Hinv1, Hinv2, tolerance = 1e-05)
expect_equal(Hinv1, Hinv3, tolerance = 1e-5) # ucminf vs lavaan
#> ----- FAILED[data]: <-->
#> call| expect_equal(Hinv1, Hinv3, tolerance = 1e-05)
#> diff| Mean relative difference: 0.1720939
expect_equal(Hinv2, Hinv3, tolerance = 1e-5) # numderiv vs lavaan
#> ----- FAILED[data]: <-->
#> call| expect_equal(Hinv2, Hinv3, tolerance = 1e-05)
#> diff| Mean relative difference: 0.1720939
Variability matrix
# From lavaan.pl
J1 <- with(fit1@external, computeVar(lavaan.pl, D)$J[idx_plFA2lav, idx_plFA2lav])
J2 <- information_matrix(fit1, "first.order")
expect_equal(J1, J2, tolerance = 1e-5) # ucminf vs numderiv
#> ----- PASSED : <-->
#> call| expect_equal(J1, J2, tolerance = 1e-05)
Session information
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.2 (2024-10-31)
#> os Ubuntu 24.04.1 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language en
#> collate C.UTF-8
#> ctype C.UTF-8
#> tz UTC
#> date 2025-02-12
#> pandoc 3.1.11 @ /opt/hostedtoolcache/pandoc/3.1.11/x64/ (via rmarkdown)
#> quarto NA
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> bslib 0.9.0 2025-01-30 [1] RSPM
#> cachem 1.1.0 2024-05-16 [1] RSPM
#> cli 3.6.3 2024-06-21 [1] RSPM
#> codetools 0.2-20 2024-03-31 [3] CRAN (R 4.4.2)
#> colorspace 2.1-1 2024-07-26 [1] RSPM
#> desc 1.4.3 2023-12-10 [1] RSPM
#> digest 0.6.37 2024-08-19 [1] RSPM
#> doSNOW 1.0.20 2022-02-04 [1] RSPM
#> dplyr * 1.1.4 2023-11-17 [1] RSPM
#> evaluate 1.0.3 2025-01-10 [1] RSPM
#> fastmap 1.2.0 2024-05-15 [1] RSPM
#> forcats * 1.0.0 2023-01-29 [1] RSPM
#> foreach 1.5.2 2022-02-02 [1] RSPM
#> fs 1.6.5 2024-10-30 [1] RSPM
#> gbutils 0.5 2022-05-27 [1] RSPM
#> generics 0.1.3 2022-07-05 [1] RSPM
#> ggplot2 * 3.5.1 2024-04-23 [1] RSPM
#> glue 1.8.0 2024-09-30 [1] RSPM
#> gtable 0.3.6 2024-10-25 [1] RSPM
#> gtools 3.9.5 2023-11-20 [1] RSPM
#> hms 1.1.3 2023-03-21 [1] RSPM
#> htmltools 0.5.8.1 2024-04-04 [1] RSPM
#> iterators 1.0.14 2022-02-05 [1] RSPM
#> jquerylib 0.1.4 2021-04-26 [1] RSPM
#> jsonlite 1.8.9 2024-09-20 [1] RSPM
#> kableExtra 1.4.0 2024-01-24 [1] RSPM
#> knitr 1.49 2024-11-08 [1] RSPM
#> lattice 0.22-6 2024-03-20 [3] CRAN (R 4.4.2)
#> lavaan * 0.6-19 2024-09-26 [1] RSPM
#> lavaan.bingof * 0.1.2.9000 2025-02-04 [1] Github (haziqj/lavaan.bingof@0efe234)
#> lavaan.pl * 0.1.0.9002 2025-02-12 [1] local
#> lifecycle 1.0.4 2023-11-07 [1] RSPM
#> lubridate * 1.9.4 2024-12-08 [1] RSPM
#> magrittr 2.0.3 2022-03-30 [1] RSPM
#> MASS 7.3-61 2024-06-13 [3] CRAN (R 4.4.2)
#> Matrix 1.7-1 2024-10-18 [3] CRAN (R 4.4.2)
#> mcompanion 0.6 2023-12-03 [1] RSPM
#> mnormt 2.1.1 2022-09-26 [1] RSPM
#> munsell 0.5.1 2024-04-01 [1] RSPM
#> mvnfast 0.2.8 2023-02-23 [1] RSPM
#> numDeriv 2016.8-1.1 2019-06-06 [1] RSPM
#> pbivnorm 0.6.0 2015-01-23 [1] RSPM
#> pillar 1.10.1 2025-01-07 [1] RSPM
#> pkgconfig 2.0.3 2019-09-22 [1] RSPM
#> pkgdown 2.1.1 2024-09-17 [1] any (@2.1.1)
#> purrr * 1.0.4 2025-02-05 [1] RSPM
#> quadprog 1.5-8 2019-11-20 [1] RSPM
#> R6 2.5.1 2021-08-19 [1] RSPM
#> ragg 1.3.3 2024-09-11 [1] RSPM
#> rbibutils 2.3 2024-10-04 [1] RSPM
#> Rcpp 1.0.14 2025-01-12 [1] RSPM
#> RcppClock 1.1 2021-11-06 [1] RSPM
#> RcppEigen 0.3.4.0.2 2024-08-24 [1] RSPM
#> RcppParallel 5.1.10 2025-01-24 [1] RSPM
#> Rdpack 2.6.2 2024-11-15 [1] RSPM
#> readr * 2.1.5 2024-01-10 [1] RSPM
#> rlang 1.1.5 2025-01-17 [1] RSPM
#> rmarkdown 2.29 2024-11-04 [1] RSPM
#> rstudioapi 0.17.1 2024-10-22 [1] RSPM
#> sass 0.4.9 2024-03-15 [1] RSPM
#> scales 1.3.0 2023-11-28 [1] RSPM
#> sessioninfo 1.2.3 2025-02-05 [1] RSPM
#> snow 0.4-4 2021-10-27 [1] RSPM
#> stringi 1.8.4 2024-05-06 [1] RSPM
#> stringr * 1.5.1 2023-11-14 [1] RSPM
#> svglite 2.1.3 2023-12-08 [1] RSPM
#> systemfonts 1.2.1 2025-01-20 [1] RSPM
#> textshaping 1.0.0 2025-01-20 [1] RSPM
#> tibble * 3.2.1 2023-03-20 [1] RSPM
#> tidyr * 1.3.1 2024-01-24 [1] RSPM
#> tidyselect 1.2.1 2024-03-11 [1] RSPM
#> tidyverse * 2.0.0 2023-02-22 [1] RSPM
#> timechange 0.3.0 2024-01-18 [1] RSPM
#> tinytest * 1.4.1 2023-02-22 [1] RSPM
#> tzdb 0.4.0 2023-05-12 [1] RSPM
#> ucminf 1.2.2 2024-06-24 [1] RSPM
#> utf8 1.2.4 2023-10-22 [1] RSPM
#> vctrs 0.6.5 2023-12-01 [1] RSPM
#> viridisLite 0.4.2 2023-05-02 [1] RSPM
#> withr 3.0.2 2024-10-28 [1] RSPM
#> xfun 0.50 2025-01-07 [1] RSPM
#> xml2 1.3.6 2023-12-04 [1] RSPM
#> yaml 2.3.10 2024-07-26 [1] RSPM
#>
#> [1] /home/runner/work/_temp/Library
#> [2] /opt/R/4.4.2/lib/R/site-library
#> [3] /opt/R/4.4.2/lib/R/library
#> * ── Packages attached to the search path.
#>
#> ──────────────────────────────────────────────────────────────────────────────