Fit a Confirmatory Factor Analysis (CFA) model using the lavaan.pl()
engine
using the lavaan
framework. By default, a quasi-Newton BFGS optimiser
from the ucminf
package is used. For large data sets, the stochastic
approximation algorithm can be used.
Arguments
- model
A description of the user-specified model. Typically, the model is described using the lavaan model syntax. See
lavaan::model.syntax
for more information. Alternatively, a parameter table (eg. the output of thelavaan::lavaanify()
function) is also accepted.- data
A data frame containing the observed variables used in the model. Variables must be declared as ordered factors.
- std.lv
If
TRUE
, the metric of each latent variable is determined by fixing their (residual) variances to 1.0. IfFALSE
, the metric of each latent variable is determined by fixing the factor loading of the first indicator to 1.0.- estimator
The estimator is
PML
. If any other estimator is provided, thenlavaan::cfa()
is used.- estimator.args
A list of arguments for
fit_plFA()
–see the help file for more details. Possible options are:method
One of
"ucminf"
(default) for the quasi-Newton BFGS optimiser, or"SA"
for stochastic approximation.init_method
One of
"SA"
(default) for stochastic approximation,"custom"
for user-defined starting values, or"standard"
for standard starting values.cpp_control_init
A list of control parameters for the initialisation algorithm.
ncores
The number of cores to use for parallel computation.
valdata
Validation data.
computevar_numderiv
If
TRUE
, the asymptotic variance-covariance matrix is computed using numerical derivatives.
- start
A vector of starting values to use (in the order of free loadings, thresholds, and then factor correlations). If not provided, the starting point is computed according to
fit_plFA()
'sINIT_METHOD
.- control
A list of control parameters for the estimation algorithm. See
fit_plFA()
for more information.- verbose
If
TRUE
, print additional information during the estimation process.- ...
Additional arguments to be passed to
lavaan()
.
Value
A plFAlavaan
object, which is a subclass of the lavaan
class.
Therefore, all methods available for lavaan
objects are expected to be
compatible with plFAlavaan
objects.
Details
Not all lavaan
options can be used at present. Some options of
interest are:
information
The information matrix to use. Only
"observed"
is currently supported.se
The standard error method to use. Only
"robust.huber.white"
is currently supported.test
No GOF tests are available as of now, so this is set to
"none"
.
References
Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., & Jöreskog, K. G. (2012). Pairwise likelihood estimation for factor analysis models with ordinal data. Computational Statistics & Data Analysis, 56(12), 4243–4258. https://doi.org/10.1016/j.csda.2012.04.010
Alfonzetti, G., Bellio, R., Chen, Y., & Moustaki, I. (2025). Pairwise stochastic approximation for confirmatory factor analysis of categorical data. British Journal of Mathematical and Statistical Psychology, 78(1), 22–43. https://doi.org/10.1111/bmsp.12347
Examples
# A simple binary factor model using the LSAT data
fit <- cfa("eta =~ y1 + y2 + y3 + y4 + y5", LSAT, std.lv = TRUE)
summary(fit)
#> lavaan.pl 0.1.0.9002
#> ⨉
#> lavaan 0.6-19 ended normally after 22 iterations
#>
#> Estimator PML
#> Optimization method UCMINF
#> Number of model parameters 10
#>
#> Number of observations 1000
#>
#>
#> Parameter Estimates:
#>
#> Parameterization Delta
#> Standard errors Sandwich
#> Information bread Observed
#> Observed information based on Hessian
#>
#> Latent Variables:
#> Estimate Std.Err z-value P(>|z|)
#> eta =~
#> y1 0.389 0.103 3.767 0.000
#> y2 0.397 0.080 4.937 0.000
#> y3 0.472 0.097 4.871 0.000
#> y4 0.376 0.087 4.332 0.000
#> y5 0.340 0.103 3.310 0.001
#>
#> Thresholds:
#> Estimate Std.Err z-value P(>|z|)
#> y1|t1 -1.433 0.068 -21.195 0.000
#> y2|t1 -0.550 0.041 -13.401 0.000
#> y3|t1 -0.133 0.040 -3.343 0.001
#> y4|t1 -0.716 0.044 -16.457 0.000
#> y5|t1 -1.126 0.052 -21.549 0.000
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|)
#> .y1 0.849
#> .y2 0.842
#> .y3 0.778
#> .y4 0.859
#> .y5 0.885
#> eta 1.000
#>